organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4,6-Dichloro-2-{[(E)-(3-{[(E)-3,5dichloro-2-hydroxybenzylidene]amino}-2,2-dimethylpropyl)imino]methyl}phenol

Hadi Kargar,^a* Reza Kia,^{b,c} Saeideh Abbasian^a and Muhammad Nawaz Tahir^d*

^aDepartment of Chemistry, Payame Noor University, PO BOX 19395-3697 Tehran, I.R. of Iran, ^bX-ray Crystallography Lab., Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran, ^cDepartment of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran, and ^dDepartment of Physics, University of Sargodha, Punjab, Pakistan Correspondence e-mail: hkargar@pnu.ac.ir, dmntahir_uos@yahoo.com

Received 9 December 2011; accepted 12 December 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.042; wR factor = 0.119; data-to-parameter ratio = 21.0.

In the title compound, C₁₉H₁₈Cl₄N₂O₂, a potential tetradentate Schiff base ligand, the dihedral angle between the two benzene rings is $48.01 (10)^\circ$. The configuration about the two C=N bonds is E and two intramolecular $O-H \cdots N$ hydrogen bonds make S(6) ring motifs. In the crystal, molecules are linked along the *b* axis *via* intermolecular $C-H\cdots Cl$ interactions. The crystal structure is further stabilized by an intermolecular π - π interaction [centroid-centroid distance = 3.5744 (12) Å].

Related literature

For standard bond-lengths, see: Allen et al. (1987). For hydrogen bond motifs, see: Bernstein et al. (1995). For related structures, see: Kargar et al. (2011); Kia et al. (2010).

Experimental

Crystal data

β

$C_{19}H_{18}Cl_4N_2O_2$	$V = 2085.70 (11) \text{ Å}^3$
$M_r = 448.15$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 16.5265 (5) Å	$\mu = 0.58 \text{ mm}^{-1}$
b = 10.3242 (3) Å	$T = 296 { m K}$
c = 12.6433 (4) Å	$0.18 \times 0.12 \times 0.08$ m
$\beta = 104.796 \ (1)^{\circ}$	

mm

19903 measured reflections

 $R_{\rm int} = 0.027$

5165 independent reflections

3427 reflections with $I > 2\sigma(I)$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{\min} = 0.902, \ T_{\max} = 0.955$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.042$	246 parameters
$wR(F^2) = 0.119$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.40 \text{ e } \text{\AA}^{-3}$
5165 reflections	$\Delta \rho_{\rm min} = -0.38 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\overline{\begin{array}{c} O1 - H1 \cdots N1 \\ O2 - H2A \cdots N2 \\ C12 - H12B \cdots C11^{i} \end{array}}$	0.93	1.73	2.553 (2)	147
	0.90	1.71	2.553 (2)	155
	0.97	2.80	3.749 (2)	167

Symmetry code: (i) $-x, y + \frac{1}{2}, -z - \frac{1}{2}$

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

HK and SA thank PNU for financial support. MNT thanks GC University of Sargodha, Pakistan, for research facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2348).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.

Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Kargar, H., Kia, R., Pahlavani, E. & Tahir, M. N. (2011). Acta Cryst. E67, o614. Kia, R., Kargar, H., Tahir, M. N. & Kianoosh, F. (2010). Acta Cryst. E66, o2296. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2012). E68, o142 [doi:10.1107/S1600536811053438]

4,6-Dichloro-2-{[(*E*)-(3-{[(*E*)-3,5-dichloro-2-hydroxybenzylidene]amino}-2,2-dimethylpropyl)imino]methyl}phenol

H. Kargar, R. Kia, S. Abbasian and M. N. Tahir

Comment

In continuation of our work on Schiff base ligands (Kargar *et al.*, 2011; Kia *et al.*, 2010), we present herein the crystal structure of the title compound.

The title molecule, Fig. 1, is a potential tetradentate Schiff base ligand. The bond lengths (Allen *et al.*, 1987) and angles are within normal ranges and are comparable to those found for similar structures, for example 4,4-Dimethoxy-2,2-[2,2-di-methylpropane-1,3-diylbis(nitrilomethanylylidene)] diphenol (Kargar *et al.*, 2011) and 5,5-Bis(diethylamino)-2,2-[2,2-di-methylpropane-1,3-diylbis(nitrilomethylidyne)] diphenol (Kia *et al.*, 2010). There are two intramolecular O—H···N hydrogen bonds (Table 1) making S(6) ring motifs (Bernstein *et al.*, 1995), and the configuration about both C= N bonds is E. The two benzene rings, (C1-C6) and (C14-C19), are inclined to one another by 48.01 (10)°.

In the crystal, neighbouring molecules are linked along the *b*-axis direction through intermolecular C—H···Cl interactions (Table 1 and Fig. 2). The crystal structure is further stabilized by an intermolecular π - π interaction involving inversion related molecules [Cg1···Cg1ⁱ = 3.5744 (12)Å; (i) -x, -y, -z; Cg1 is the centroid of ring (C1-C6)].

Experimental

The title compound was synthesized by adding 3,5-dichloro-salicylaldehyde (2 mmol) to a solution of 2,2-dimethyl-1,3propanediamine (1 mmol) in ethanol (30 ml). The mixture was refluxed with stirring for 30 min. The resultant solution was filtered. Yellow single crystals of the title compound, suitable for *X*-ray analysis, were obtained by recrystallization from ethanol on slow evaporation of the solvent at room temperature over several days.

Refinement

The OH H-atoms were located in a difference Fourier map and were allowed to ride on the parent O-atom with $U_{iso}(H) = 1.5U_{eq}(O)$. The C-bound H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.93, 0.96 and 0.97 Å for CH, CH₃ and CH₂ H-atoms, respectively, with $U_{iso}(H) = k \times U_{eq}(C)$, where k = 1.5 for CH₃ H-atoms, and k = 1.2 for all other H-atoms.

Figures

Fig. 1. A view of the molecular structure of the title compound, showing 40% probability displacement ellipsoids and the atomic numbering. The dashed lines indicate the intramolecular N-H…O hydrogen bonds (see Table 1 for details).

Fig. 2. A partial view of the crystal packing of the title compound, viewed down the *c*-axis, showing the intermolecular C—H···Cl interactions (dashed lines; only the H atoms involved in these interactions are shown].

4,6-Dichloro-2-{[(*E*)-(3-{[(*E*)-3,5-dichloro-2- hydroxybenzylidene]amino}-2,2-dimethylpropyl)imino]methyl}phenol

$C_{19}H_{18}Cl_4N_2O_2$	F(000) = 920
$M_r = 448.15$	$D_{\rm x} = 1.427 \ {\rm Mg \ m}^{-3}$
Monoclinic, $P2_1/c$	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 2540 reflections
a = 16.5265 (5) Å	$\theta = 2.5 - 27.4^{\circ}$
b = 10.3242 (3) Å	$\mu = 0.58 \text{ mm}^{-1}$
c = 12.6433 (4) Å	T = 296 K
$\beta = 104.796 (1)^{\circ}$	Block, yellow
$V = 2085.70 (11) \text{ Å}^3$	$0.18\times0.12\times0.08~mm$
<i>Z</i> = 4	

Data collection

Bruker SMART APEXII CCD area-detector diffractometer	5165 independent reflections
Radiation source: fine-focus sealed tube	3427 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.027$
φ and ω scans	$\theta_{\text{max}} = 28.3^{\circ}, \ \theta_{\text{min}} = 2.4^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2005)	$h = -22 \rightarrow 22$
$T_{\min} = 0.902, \ T_{\max} = 0.955$	$k = -13 \rightarrow 13$
19903 measured reflections	$l = -16 \rightarrow 16$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.042$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.119$	H-atom parameters constrained
<i>S</i> = 1.03	$w = 1/[\sigma^2(F_o^2) + (0.0483P)^2 + 0.5514P]$ where $P = (F_o^2 + 2F_c^2)/3$
5165 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
246 parameters	$\Delta \rho_{\rm max} = 0.40 \ {\rm e} \ {\rm \AA}^{-3}$

0 restraints

 $\Delta \rho_{\rm min} = -0.38 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C11	-0.21903 (4)	-0.02100 (8)	-0.20278 (6)	0.0929 (2)
Cl2	-0.10588 (6)	0.11487 (9)	0.21661 (6)	0.1149 (4)
C13	0.46259 (4)	0.99049 (7)	0.34212 (5)	0.0831 (2)
Cl4	0.41065 (4)	1.19135 (6)	-0.06309 (6)	0.0755 (2)
01	0.03427 (11)	0.22770 (15)	0.14769 (12)	0.0690 (4)
H1	0.0791	0.2544	0.1216	0.104*
02	0.39245 (10)	0.75500 (14)	0.22723 (12)	0.0621 (4)
H2A	0.3725	0.6889	0.1818	0.093*
N1	0.11973 (11)	0.27146 (15)	0.00940 (14)	0.0512 (4)
N2	0.33256 (10)	0.61812 (16)	0.05705 (15)	0.0540 (4)
C1	-0.01322 (12)	0.16963 (17)	-0.04155 (15)	0.0436 (4)
C2	-0.07424 (13)	0.1108 (2)	-0.12407 (17)	0.0529 (5)
H2	-0.0680	0.1085	-0.1951	0.063*
C3	-0.14354 (12)	0.0562 (2)	-0.10131 (19)	0.0561 (5)
C4	-0.15422 (13)	0.05939 (19)	0.0031 (2)	0.0583 (5)
H4	-0.2016	0.0231	0.0181	0.070*
C5	-0.09431 (14)	0.11660 (19)	0.08457 (18)	0.0561 (5)
C6	-0.02244 (13)	0.17359 (17)	0.06566 (16)	0.0488 (5)
C7	0.06112 (13)	0.22448 (17)	-0.06553 (16)	0.0484 (5)
H7	0.0657	0.2251	-0.1373	0.058*
C8	0.19538 (14)	0.32198 (19)	-0.01584 (19)	0.0563 (5)
H8A	0.1845	0.3363	-0.0940	0.068*
H8B	0.2399	0.2585	0.0049	0.068*
C9	0.22377 (12)	0.44956 (17)	0.04474 (16)	0.0478 (4)
C10	0.15394 (14)	0.5495 (2)	0.0148 (2)	0.0665 (6)
H10A	0.1729	0.6300	0.0508	0.100*
H10B	0.1062	0.5192	0.0377	0.100*
H10C	0.1387	0.5625	-0.0630	0.100*
C11	0.24805 (17)	0.4257 (3)	0.16823 (19)	0.0722 (6)
H11A	0.2659	0.5057	0.2057	0.108*
H11B	0.2929	0.3639	0.1862	0.108*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H11C	0.2006	0.3927	0.1903	0.108*
C12	0.30059 (13)	0.49455 (19)	0.00771 (19)	0.0565 (5)
H12A	0.3442	0.4296	0.0277	0.068*
H12B	0.2857	0.5031	-0.0713	0.068*
C13	0.33932 (12)	0.71454 (19)	-0.00290 (18)	0.0517 (5)
H13	0.3238	0.7055	-0.0786	0.062*
C14	0.37085 (11)	0.83825 (18)	0.04477 (17)	0.0476 (4)
C15	0.39724 (12)	0.85146 (19)	0.15984 (17)	0.0496 (5)
C16	0.42908 (12)	0.9726 (2)	0.20143 (18)	0.0541 (5)
C17	0.43340 (13)	1.0753 (2)	0.1340 (2)	0.0594 (6)
H17	0.4546	1.1546	0.1636	0.071*
C18	0.40590 (13)	1.0599 (2)	0.02195 (19)	0.0552 (5)
C19	0.37588 (12)	0.9427 (2)	-0.02257 (18)	0.0523 (5)
H19	0.3588	0.9332	-0.0982	0.063*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0543 (4)	0.1232 (6)	0.0882 (5)	-0.0138 (4)	-0.0059 (3)	-0.0123 (4)
Cl2	0.1553 (8)	0.1295 (7)	0.0893 (5)	-0.0722 (6)	0.0850 (6)	-0.0384 (5)
C13	0.0872 (5)	0.0918 (5)	0.0674 (4)	-0.0259 (4)	0.0148 (3)	-0.0268 (3)
Cl4	0.0754 (4)	0.0543 (3)	0.1042 (5)	0.0008 (3)	0.0363 (4)	0.0125 (3)
01	0.0863 (11)	0.0739 (10)	0.0535 (9)	-0.0326 (9)	0.0301 (8)	-0.0173 (7)
O2	0.0711 (10)	0.0547 (8)	0.0578 (9)	-0.0074 (7)	0.0115 (8)	-0.0026 (7)
N1	0.0587 (10)	0.0428 (9)	0.0580 (10)	-0.0102 (7)	0.0258 (8)	-0.0038 (7)
N2	0.0503 (9)	0.0469 (9)	0.0671 (11)	-0.0085 (7)	0.0191 (8)	-0.0114 (8)
C1	0.0483 (10)	0.0370 (9)	0.0478 (10)	0.0032 (7)	0.0166 (8)	0.0044 (8)
C2	0.0533 (12)	0.0557 (12)	0.0478 (11)	0.0066 (9)	0.0094 (9)	0.0042 (9)
C3	0.0422 (10)	0.0541 (12)	0.0670 (14)	0.0042 (9)	0.0052 (9)	0.0007 (10)
C4	0.0523 (12)	0.0457 (11)	0.0840 (16)	-0.0002 (9)	0.0305 (11)	-0.0033 (11)
C5	0.0687 (13)	0.0475 (11)	0.0625 (13)	-0.0057 (10)	0.0358 (11)	-0.0058 (10)
C6	0.0617 (12)	0.0361 (9)	0.0540 (11)	-0.0032 (8)	0.0248 (10)	-0.0040 (8)
C7	0.0611 (12)	0.0419 (10)	0.0468 (11)	0.0022 (9)	0.0223 (9)	0.0032 (8)
C8	0.0621 (13)	0.0464 (11)	0.0688 (14)	-0.0103 (9)	0.0319 (11)	-0.0100 (10)
C9	0.0514 (11)	0.0403 (10)	0.0552 (11)	-0.0026 (8)	0.0202 (9)	-0.0067 (8)
C10	0.0596 (13)	0.0503 (12)	0.0909 (17)	0.0019 (10)	0.0214 (12)	-0.0018 (12)
C11	0.0799 (16)	0.0775 (16)	0.0589 (14)	-0.0062 (13)	0.0171 (12)	-0.0038 (12)
C12	0.0573 (12)	0.0485 (11)	0.0693 (14)	-0.0104 (9)	0.0262 (11)	-0.0170 (10)
C13	0.0462 (11)	0.0539 (12)	0.0560 (12)	-0.0055 (9)	0.0148 (9)	-0.0109 (10)
C14	0.0375 (9)	0.0459 (10)	0.0605 (12)	-0.0032 (8)	0.0147 (9)	-0.0068 (9)
C15	0.0398 (10)	0.0483 (11)	0.0615 (13)	-0.0013 (8)	0.0145 (9)	-0.0078 (9)
C16	0.0440 (10)	0.0583 (12)	0.0610 (13)	-0.0061 (9)	0.0150 (9)	-0.0164 (10)
C17	0.0486 (11)	0.0473 (11)	0.0863 (17)	-0.0085 (9)	0.0244 (11)	-0.0151 (11)
C18	0.0461 (11)	0.0479 (11)	0.0763 (15)	0.0008 (9)	0.0244 (10)	0.0006 (10)
C19	0.0432 (10)	0.0545 (11)	0.0613 (13)	-0.0014 (9)	0.0173 (9)	-0.0036 (10)

Geometric parameters (Å, °)

Cl1—C3	1.738 (2)	С8—Н8А	0.9700

Cl2—C5	1.728 (2)	C8—H8B	0.9700
Cl3—C16	1.733 (2)	C9—C10	1.522 (3)
Cl4—C18	1.745 (2)	C9—C11	1.529 (3)
O1—C6	1.330 (2)	C9—C12	1.533 (3)
O1—H1	0.9260	C10—H10A	0.9600
O2—C15	1.326 (2)	C10—H10B	0.9600
O2—H2A	0.8989	C10—H10C	0.9600
N1—C7	1.266 (3)	C11—H11A	0.9600
N1—C8	1.463 (2)	C11—H11B	0.9600
N2—C13	1.273 (3)	C11—H11C	0.9600
N2—C12	1.459 (2)	C12—H12A	0.9700
C1—C2	1.392 (3)	C12—H12B	0.9700
C1—C6	1.403 (3)	C13—C14	1.451 (3)
C1—C7	1.453 (3)	C13—H13	0.9300
C2—C3	1.371 (3)	C14—C19	1.390 (3)
C2—H2	0.9300	C14—C15	1.415 (3)
C3—C4	1.377 (3)	C15—C16	1.406 (3)
C4—C5	1.367 (3)	C16—C17	1.374 (3)
C4—H4	0.9300	C17—C18	1.382 (3)
C5—C6	1.400 (3)	С17—Н17	0.9300
С7—Н7	0.9300	C18—C19	1.373 (3)
C8—C9	1.536 (3)	С19—Н19	0.9300
С6—О1—Н1	108.4	С9—С10—Н10В	109.5
C15—O2—H2A	103.5	H10A-C10-H10B	109.5
C7—N1—C8	120.43 (17)	C9—C10—H10C	109.5
C13—N2—C12	120.43 (19)	H10A—C10—H10C	109.5
C2—C1—C6	120.03 (18)	H10B-C10-H10C	109.5
C2—C1—C7	120.20 (18)	C9—C11—H11A	109.5
C6—C1—C7	119.76 (18)	C9—C11—H11B	109.5
C3—C2—C1	120.40 (19)	H11A—C11—H11B	109.5
C3—C2—H2	119.8	С9—С11—Н11С	109.5
C1—C2—H2	119.8	H11A—C11—H11C	109.5
C2—C3—C4	120.7 (2)	H11B—C11—H11C	109.5
C2—C3—Cl1	120.95 (18)	N2—C12—C9	111.85 (16)
C4—C3—Cl1	118.37 (17)	N2—C12—H12A	109.2
C5—C4—C3	119.14 (19)	C9—C12—H12A	109.2
С5—С4—Н4	120.4	N2—C12—H12B	109.2
C3—C4—H4	120.4	C9—C12—H12B	109.2
C4—C5—C6	122.4 (2)	H12A—C12—H12B	107.9
C4—C5—Cl2	119.05 (16)	N2—C13—C14	121.18 (19)
C6—C5—Cl2	118.52 (17)	N2—C13—H13	119.4
O1—C6—C5	120.20 (18)	C14—C13—H13	119.4
O1—C6—C1	122.47 (17)	C19—C14—C15	120.27 (18)
C5—C6—C1	117.33 (19)	C19—C14—C13	120.01 (19)
N1—C7—C1	121.28 (18)	C15—C14—C13	119.72 (18)
N1—C7—H7	119.4	O2—C15—C16	120.39 (19)
С1—С7—Н7	119.4	O2—C15—C14	122.35 (17)
N1—C8—C9	111.48 (16)	C16—C15—C14	117.26 (19)
N1—C8—H8A	109.3	C17—C16—C15	121.9 (2)

supplementary materials

С9—С8—Н8А	109.3	C17—C16—Cl3	120.06 (16)
N1—C8—H8B	109.3	C15—C16—Cl3	118.02 (17)
С9—С8—Н8В	109.3	C16—C17—C18	119.44 (19)
H8A—C8—H8B	108.0	С16—С17—Н17	120.3
C10—C9—C11	110.33 (18)	C18—C17—H17	120.3
C10—C9—C12	110.66 (17)	C19—C18—C17	120.8 (2)
C11—C9—C12	109.80 (18)	C19—C18—Cl4	120.06 (18)
C10—C9—C8	110.00 (18)	C17—C18—Cl4	119.17 (16)
C11—C9—C8	109.78 (17)	C18—C19—C14	120.3 (2)
C12—C9—C8	106.19 (15)	С18—С19—Н19	119.8
C9—C10—H10A	109.5	C14—C19—H19	119.8
C6—C1—C2—C3	-0.1 (3)	C13—N2—C12—C9	-123.0 (2)
C7—C1—C2—C3	178.47 (18)	C10-C9-C12-N2	58.9 (2)
C1—C2—C3—C4	0.4 (3)	C11—C9—C12—N2	-63.2 (2)
C1—C2—C3—C11	-178.43 (15)	C8—C9—C12—N2	178.20 (18)
C2—C3—C4—C5	-0.7 (3)	C12—N2—C13—C14	179.89 (17)
Cl1—C3—C4—C5	178.21 (16)	N2-C13-C14-C19	-178.60 (18)
C3—C4—C5—C6	0.6 (3)	N2-C13-C14-C15	2.1 (3)
C3—C4—C5—Cl2	-177.50 (16)	C19—C14—C15—O2	179.00 (18)
C4—C5—C6—O1	-179.76 (19)	C13—C14—C15—O2	-1.7 (3)
Cl2—C5—C6—O1	-1.6 (3)	C19—C14—C15—C16	-0.8 (3)
C4—C5—C6—C1	-0.3 (3)	C13-C14-C15-C16	178.51 (17)
Cl2—C5—C6—C1	177.81 (15)	O2-C15-C16-C17	-178.70 (18)
C2-C1-C6-01	179.48 (18)	C14—C15—C16—C17	1.1 (3)
C7—C1—C6—O1	0.9 (3)	O2-C15-C16-Cl3	0.7 (3)
C2—C1—C6—C5	0.1 (3)	C14—C15—C16—Cl3	-179.46 (14)
C7—C1—C6—C5	-178.52 (17)	C15—C16—C17—C18	-0.1 (3)
C8—N1—C7—C1	177.78 (17)	Cl3—C16—C17—C18	-179.55 (16)
C2—C1—C7—N1	-175.71 (18)	C16—C17—C18—C19	-1.2 (3)
C6—C1—C7—N1	2.9 (3)	C16—C17—C18—Cl4	179.39 (15)
C7—N1—C8—C9	137.80 (19)	C17-C18-C19-C14	1.5 (3)
N1—C8—C9—C10	-57.9 (2)	Cl4—C18—C19—C14	-179.09 (15)
N1—C8—C9—C11	63.7 (2)	C15-C14-C19-C18	-0.5 (3)
N1—C8—C9—C12	-177.66 (18)	C13—C14—C19—C18	-179.79 (17)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
O1—H1…N1	0.93	1.73	2.553 (2)	147
O2—H2A···N2	0.90	1.71	2.553 (2)	155
C12—H12B···Cl1 ⁱ	0.97	2.80	3.749 (2)	167
Symmetry codes: (i) $-x$, $y+1/2$, $-z-1/2$.				

